DEPARTMENT OF NANOSCIENCE AND NANOTECHNOLOGY

UNIVERSITY OF KERALA

M.PHIL PROGRAMME IN NANOBIOLOGY

SYLLABUS

Under Credit and Semester System w.e.f 2016 admissions

DEPARTMENT OF NANOSCIENCE AND NANOTECHNOLOGY

UNIVERSITY OF KERALA

M.PHIL PROGRAMME IN NANOBIOLOGY

Programme Objectives

- To introduce students to areas of creative thinking and critical reasoning which are relevant to his/her research and to introduce the students to the current research issues and processes.
- The programme will consist of lectures and related activities that will help in developing good understanding of methods of research process and management
- To provide students knowledge in the field of Nanoscience and nanotechnology and Nanobiology
- The programme will consist of lectures and related activities that will help the students to understand the characterization techniques to analyze the nanomaterials.
- To provide students knowledge in the field of Nanobiology and current trends in the field of nanotechnology.
- The programme will consist of lectures and related activities that will help the students to understand emerging technologies in the field of Nanobiology

Semester No.	Course code	Name of the Course	No.of Credits
Ι	NBY-711	Research Methodology	4
	NBY-712	Introduction to Nanoscience	4
	NBY-713	Recent advances in Nanobiology and Nanotechnology	4
II	NBY-721	Dissertation	20
		Total Credits	32

Structure of the Programme

Semester : I

Course Code : NBY-711

Course title : RESEARCH METHODOLOGY

Credits:4

Aim : To introduce students to areas of creative thinking and critical reasoning which are relevant to his/her research and to introduce the students to the current research issues and processes.

Objectives : The course will consist of lectures and related activities that will help in developing good understanding of methods of research process and management.

Module I : OBJECTIVES AND TYPES OF RESEARCH

Meaning of research – Motivation and objectives – Research methods vs. Methodology. Types of research – Descriptive vs. Analytical, Applied vs. Fundamental, Quantitative vs. Qualitative, Conceptual vs. Empirical.

Research formulation

Defining and formulating the research problem - Selecting the problem - Necessity of defining the problem - Formulation of a working hypothesis - Importance of literature review in defining a problem – Literature review – Primary and secondary sources – Reviews, treatise, monographs-patents – web as a source – Searching the web and information mining - Critical literature review – Identifying gap areas from literature review.

Module II: RESEARCH DESIGN, METHODS

Research design – Basic Principles- Need of research design – Features of good design – Important concepts relating to research design – Observation and facts, laws and theories. Prediction and explanation, induction, deduction - Development of models - Developing a research plan - Exploration, Description, Diagnosis - Experimentation - Determining experimental and sample design.

Data collection and analysis

Execution of the research - Observation and Collection of experimental data. Methods of data collection - Sampling Methods - Sampling techniques, steps in sampling, sampling size, advantages and limitations of sampling - Data Processing and Analysis strategies - Data Analysis with Statistical Packages - Hypothesis-testing - Generalization and Interpretation.

Module III: REPORTING AND THESIS WRITING

Structure and components of scientific reports - Types of report – Technical reports and thesis – Significance – Different steps in the preparation – Layout, structure and Language of typical reports – Data presentation – Illustrations, graphics, tables, histograms and pi diagrams - Bibliography, referencing and footnotes – Oral and poster presentation – Planning – Preparation – Practice – Making presentation – Use of visual aids.

Module IV : RESEARCH ETHICS

Environmental impacts - Ethical issues - Ethical Committees - Commercialisation – Copy right - royalty - Intellectual property rights and patent law – Trade Related aspects of Intellectual Property Rights - Reproduction of published material-Plagiarism - Citation and acknowledgement - Reproducibility and accountability.

Module V: ERRORS AND UNCERTAINTIES IN MEASUREMENTS

Introduction to Errors and uncertainties in the measurement - Performance parameters of instrument - Propagation of uncertainties in compound quantities - curve fitting, regression and correlation.

REFERENCES

- Garg. B. L, Karadia. R, Agarwal. F and Agarwal. U. K- An Introduction to Research methodology, RBSA Publ, 2002
- Kothari. C. R- Research Methodology: Methods and Techniques, New Age Intl, 1990.
- Rudolf J. Freund, William J Wilson, Donna L. Mohr- Statistical Methods (3rdedition), Elsevier, 2010.
- Sinha. S. C and Dhiman. A. K- Research Methodology, Vol I & II Ess Ess Publ, 2002.
- Trochim W M K- Research Methods: The Concise Knowledge Base, Atomic Dog Publ, 2005.
- Wadehra. B. L- Law Relating To Patents, Trade Marks, Copyright Designs and Geographical Indications, Universal Law Publ, 2000.
- Yogish. S. N- Statistical Methods, Mangal Deep Publ, 2007.

ADDITIONAL REFERENCES

- Anthony. M, Graziano. A. M and M L Raulin. M L, Research Methods: A Process of 1998.
- Carlos. C M, Intellectual property rights, the WTO and developing countries : the TRIPS
- Coley. S. M and Scheinberg. C. A, Proposal Writing, Sage Publ, 1990.
- Day. R. A, How to Write and Publish a Scientific Paper, Cambridge University Press, 1992.
- Fink A, Conducting Research Literature Reviews: From the Internet to Paper. Sage 2009
- Leedy. P. D and Ormrod. J. E, Practical Research : Planning and Design, Prentice Hall, 2004.
- Satarkar .S. V, Intellectual property rights and Copy right. Ess Ess Publ, 2000
- Leedy P D, and J E Ormrod, Practical Research: Planning and Design, Prentice Hall, 2004.
- Smith R V, Graduate Research: A Guide for Students in the Sciences, Univ Washington Press, agreement and policy options, Zed Books, New York, 2000.

Semester : I

Course Code : NBY- 712

Course title : INTRODUCTION TO NANOSCIENCE

Credits : 4

Aim : To provide students knowledge in the field of Nanoscience and nanotechnology and Nanobiology

Objectives: The course will consist of lectures and related activities that will help the students to understand the characterization techniques to analyze the nanomaterials.

Module I: INTRODUCTION TO NANOMATERIALS

Zero-dimensional, one-dimensional and two-dimensional nanostructures - size dependent properties – quantum confinement – optical properties - specific heat and melting point- mechanical properties – super plasticity - plastic deformation of ceramics - nanoceramics - catalytic properties.

Crystal structure – bonding and antibonding orbitals – hybridization – types of bonding – types of crystal structure.

Synthesis of nanomaterials - bottom-up and top-down approaches - nanoparticles - colloidal technique - homogeneous and heterogeneous nucleation - synthesis of metallic and semiconductor nanoparticles - stabilization of nanoparticles - sonochemical method - synthesis and properties of core-shell nanoparticles.

Nanowires and nanorods - spontaneous growth - vapour-liquid-solid growth – template-based synthesis - nanostructured films - self-assembly - molecular self-assembly in solutions – self assembly of nanoparticles - Langmuir-Blodgett films - electrochemical deposition.

Module II : EXPERIMENTAL TECHNIQUES

Principle, working and interpretation of results of – XRD – XPS - AES – EDS - SEM - STM – AFM – TEM - HRTEM - BET surface area and porosimetry. UV-Vis – Photoluminescence - FTIR and Raman spectroscopy. Thermal analysis – TGA, DTA and DSC.

Module III :QUANTUM DOTS (QDs)

Surface chemistry and bioconjugation - luminescent quantum dots - quantum dot FRET-based protease probes - quantum dot-composite construction - applications of QD composites - QD applications in biomolecule assays - QD antibody - QD encoded human DNA - QD based immunostaining - QD for in vivo imaging.

Core-shell nanoparticles – core-shell nanoparticles with a lipid core – core-shell nanoparticles with a polymeric core - hyaluronic acid (HA) - core-shell nanoparticles with a metallic core - drug delivery and molecular imaging using core-shell nanoparticles.

Dendrimers and hyperbranched nanospheres - introduction - synthetic protocols - dendrimers as artificial proteins - nanoscale containers - carrier properties - imaging agents - mutifunctional nanoscaffolds - dendrimers as nanodrugs - biocompatibility studies.

Module IV : NANOBIOLOGY

Overview of cell structure and biomacromolecules - Nanobiotechnology – Introduction - learning from nature - DNA nanotechnology - self-assembled DNA nanotubes and their applications - nanoparticles for biological assays - nanoparticles for drug delivery vehicles - surface modification of nanoparticulate drug carriers - need of surface modification - attaching various ligands to surface of nanocarriers - polymers for longevity – ligands for targeting combination with protecting polymers - ligands for intracellular delivery of nanocarriers.

Module V: ENGINEERED NANOPARTICLES

Engineered nanoparticles and biomedical applications - Physical and chemical characterization of Engineered nanoparticles - genetic and chemical alteration of Engineered NPs – Effect of Engineered nanoparticles in biological systems - genetic alterations -"click chemistry" for bioconjugation of Engineered NPs – Engineered NPs in therapeutics – cell targeting – gene delivery – bioimaging – drug encapsulation and release – immune response.

REFERENCES

- Challa Kumar (Ed) Biological and Pharmaceutical Nanomaterials, Wiley VCH Verlag, Weinheim, 2006.
- Challa Kumar(Ed) Nanomaterials for Medical Diagnosis and Therapy, Wiley-VCH, 2006.
- Challa Kumar(Ed) Semiconductor Nanomaterials, Wiley-VCH, 2010.
- Charles Kittel Introduction to Solid State Physics, John Wiley & Sons, 2003.
- Cullity. B. D and S. R. Stock Elements of X-ray diffraction, Prentice-Hall, 2001.
- Daniel L. Feldheim, Colby. A. Foss Metal Nanoparticles: Synthesis, Characterization and Applications, Marcel Dekker, NY, 2002.
- Didier Astruc(Ed) Nanoparticles and Catalysis, Wiley-VCH, 2008.
- G. Cao Nanostructues and Nanomaterials Synthesis, Properties and Applications, Imperial College Press, 2004.
- G.C. Hdjipanayis, R.W. seigel Nanophase Materials- Synthesis, Properties and Applications, Kluwer Academic Publishers, 1994.
- Geoffrey M. Cooper, Robert E. Hausman The Cell A Molecular Approach ASMPress, Washington, 2007.
- Harvey Lodish, Arnold Berk et al. Molecular Cell Biology, W.H. Freeman& Co., New York, 2008.

- Janos. H. Fendler (Ed) Nanoparticles and Nanostructured Films: Preperation, Characterization and Applications, Wiley VCH, 1998.
- Ralph S. Greco, Fritz B. Prinz and R. Lane Smith (Eds) Nanoscale Technology in Biological Systems, CRC Press, 2005.
- Skoog. D. A, James Holler. F, Nieman. T. A Principles of Instrumental Analysis, Harcourt College, 2007.
- Willard H. H., Merrit. L. L., Dean. J. A and Settle. F. A Instrumental Methods of Analysis, CBS Pub, 1986.
- Williams. D. B and Carte. C. B Transmission Electron Microscopy A text Book of Materials Science, Plenum Press, N. Y, 1996.
- Yoon S Lee Self-assembly and Nanotechnology-A force balance approach, Wiley, 2008.

Semester : I

Course Code : NBY- 713

Course title : RECENT ADVANCES IN NANOBIOLOGY AND NANOTECHNOLOGY

Credits : 4

Aim : To provide students knowledge in the field of Nanobiology and current trends in the field of nanotechnology.

Objectives : The course will consist of lectures and related activities that will help the students to understand emerging technologies in the field of Nanobiology

Module I : NANOTECHNOLOGY FOR DIAGNOSIS

Nanotechnology and patient diagnostics – optical diagnostic techniques – electrical diagnostic techniques – imaging diagnostics - nanotechnology enhanced tools - Raman spectroscopy - mass spectrometry – immunoassays - nanoscale cantilevers, for sensitive detection of cancer-related molecules - nanodiagnostic systems for HIV – nanotechnology and future of patient diagnostics.

Biosensors- Classes of biosensors - application of CNTs-based electrochemical sensors and biosensorsphotonic crystals – basic concepts – plasmonic biosensors - photonic crystals sensors – nanoclinic gene delivery – nanoclinics for photodynamic therapy.

Module II : NANOTECHNOLOGY FOR TREATMENT OF DISEASES

nanotechnology for drug delivery- strategies for targeted delivery observed in nature – bacteria - viruses - viral vectors for therapeutic applications - strategies for targeted delivery designed by man - nanoparticles for targeted drug delivery - drug eluting stents - activation and targeting - polymeric nanoparticles - nanofibres- nanotubes and fullerenes – nanogels - nanocrystals - protein nanoparticles.

Cancer therapy using nanomedicine - development of cancer - fundamentals of targeting strategies - use of nanotubes and quantum dots - polymeric conjugates used for tumor targeted imaging and delivery - dendritic nanostructures used for cancer imaging and therapy - nanoshell based cancer therapy- use of multifunctional nanoparticles in chemotherapy

Module III : NANOMAGNETISM AND BIOMEDICAL APPLICATIONS

Nanoscale magnetism – superparamagnetic nanoparticles of iron oxide for magnetic resonance imaging applications - physicochemical characteristics - pharmacology and metabolism - current clinical uses and future developments - gastrointestinal tract imaging - liver and spleen diseases - blood pool characteristics - characterization of the atheromatous plaque - other potential uses.

Ferrritin and related proteins – ferritin as a superparamagnetic model system – magnetoferritin – magnetotactic bacterium – magnetosomes.

Module IV : NANOTECHNOLOGY FOR TISSUE ENGINEERING

Introduction - scaffolds for tissue engineering - nanofibrous scaffolds - relevance and role of nano structured scaffolds in vascular, neural and cardiac tissue engineering - nanocomposites and applications in tissue engineering - nanotechnologies for development of artificial skin substitutes – nanolithography - nanolithographic techniques in tissue engineering.

Module V : TOXICOLOGICAL EFFECTS OF NANOMATERIALS

Physiological and biochemical effects – modes of exposure - effects of environmental exposureeffects on human health - dermal local effects - inhalation effects on the respiratory tract - bloodbrain barrier effects - differences or similarities in nanoparticle toxicity - effects of other novel nanoparticles - ethical issues related to nanoparticles.

REFERENCES

- A.J. Domb, Yasuhiko Tabata et al Nanoparticles for Pharmaceutical Applications, American Scientific Publishers, California, USA, 2007.
- Arben Merkoci Biosensing using Nanomaterials. Wiley Publication, New Jersey, 2009.
- Blitterswijk C.V Tissue engineering, Elsevier Publication. 2008.
- Cato Laurencin, Lakshmi Nair Nanotechnology and Tissue Engineering: The Scaffold, 2008.
- Challa Kumar(Ed) Semiconductor Nanomaterials, Wiley-VCH, 2010.
- Challa S.S.R. Kumar (Ed) Nanomaterials for Biosensors, Wiley-VCH, Verlag, Weinheim, 2007.
- Challa S.S.R. Kumar (Ed) Nanomaterials for Medical Diagnosis and Therapy, Wiley VCH, Verlag, Weinheim, 2007.

- Challa S.S.R. Kumar (Ed) Nanosystem Characterization Tools in the Life Science, Wiley-VCH, Verlag, Weinheim, 2006.
- Hollinger M.A Introduction to Pharmacology, Third edition, CRC Press, 2008.
- K. J. Klabunde Nanoscale Materials in Chemistry, Wiley, 2001.
- Kenneth E. Gonsalves, Craig R. Halberstadt, Cato T. Laurencin, Lekshmi S. Nair -Biomedical Nanostructures, Wiley Publication, New Jersey, 2007.
- Mansoor M. Amiji Nanotechnology for Cancer Therapy. Editor(s), CRC PRESS, 2006.
- Mick Wilson; Kamali Kannangara; Geoff Smith; Michelle Simmons; Burkhard
- Neelina H. Malsch Biomedical Nanotechnology, CRC Taylor & Franscis, 2005.
- Oded Shoseyov and Ilan Levy Nanobiotechnology: Bioinspired devices and materials of the future, Humana Press, Totowa, New Jersey, 2008.
- P. N. Prasad Nanophotonics, Wiley-Interscience, 2004.

Ragus - Nanotechnology: Basic Science and Emerging Technologies, 2002.

- <u>Ralph S. Greco</u> (Ed), <u>Fritz B. Prinz</u> (Ed), <u>R. Lane Smith</u> Nanobiology: Nanoscale Fabrication of a New Generation of Biomedical Devices, CRC Press, 2004.
- Ralph S. Greco, Fritz B. Prinz, R. Lane Smith (Eds) Nanoscale Technology in Biological Systems, CRC Press, 2005.
- Robert A The Biology of Cancer, Weinberg, Garland Science, Taylor & Francis Group, New York, 2007.
- Tuan Vo-Dinh Nanotechnology in Biology and Medicine: Methods, Devices, and Applications, CRC Press, 2007.

Semester	: 11	
Course Code	: NBY- 721	
Course title	: DISSERTATION	
Credits : 20		

Aim: The aim of this course is to enable students to develop an understanding and obtain practical experience of the research process and research skills required to undertake a supervised research project.

Students will be required to identify relevant information on a topic and critically review the research of others. A range of approaches should be used in the field of Nanoscience and Nanobiology

Objective: This course aims to develop an understanding of the processes and skills required to undertake a supervised research project at M.Phil level, and to write it up as dissertation.

The objectives are

- develop research skills commensurate with the accomplishment of a degree
- develop skills in independent inquiry
- produce a coherent and logically argued piece of writing that demonstrates competence in research and the ability to operate independently
- address issues of research design, methodology, ethics and theoretical arguments, and apply these to research